3.3.32 \(\int (d \cos (a+b x))^{11/2} \csc ^2(a+b x) \, dx\) [232]

3.3.32.1 Optimal result
3.3.32.2 Mathematica [A] (verified)
3.3.32.3 Rubi [A] (verified)
3.3.32.4 Maple [A] (verified)
3.3.32.5 Fricas [C] (verification not implemented)
3.3.32.6 Sympy [F(-1)]
3.3.32.7 Maxima [F]
3.3.32.8 Giac [F]
3.3.32.9 Mupad [F(-1)]

3.3.32.1 Optimal result

Integrand size = 21, antiderivative size = 124 \[ \int (d \cos (a+b x))^{11/2} \csc ^2(a+b x) \, dx=-\frac {d (d \cos (a+b x))^{9/2} \csc (a+b x)}{b}-\frac {15 d^6 \sqrt {\cos (a+b x)} \operatorname {EllipticF}\left (\frac {1}{2} (a+b x),2\right )}{7 b \sqrt {d \cos (a+b x)}}-\frac {15 d^5 \sqrt {d \cos (a+b x)} \sin (a+b x)}{7 b}-\frac {9 d^3 (d \cos (a+b x))^{5/2} \sin (a+b x)}{7 b} \]

output
-d*(d*cos(b*x+a))^(9/2)*csc(b*x+a)/b-9/7*d^3*(d*cos(b*x+a))^(5/2)*sin(b*x+ 
a)/b-15/7*d^6*(cos(1/2*a+1/2*b*x)^2)^(1/2)/cos(1/2*a+1/2*b*x)*EllipticF(si 
n(1/2*a+1/2*b*x),2^(1/2))*cos(b*x+a)^(1/2)/b/(d*cos(b*x+a))^(1/2)-15/7*d^5 
*sin(b*x+a)*(d*cos(b*x+a))^(1/2)/b
 
3.3.32.2 Mathematica [A] (verified)

Time = 0.72 (sec) , antiderivative size = 89, normalized size of antiderivative = 0.72 \[ \int (d \cos (a+b x))^{11/2} \csc ^2(a+b x) \, dx=\frac {d^5 \sqrt {d \cos (a+b x)} \csc (a+b x) \left (\sqrt {\cos (a+b x)} (-45+16 \cos (2 (a+b x))+\cos (4 (a+b x)))-60 \operatorname {EllipticF}\left (\frac {1}{2} (a+b x),2\right ) \sin (a+b x)\right )}{28 b \sqrt {\cos (a+b x)}} \]

input
Integrate[(d*Cos[a + b*x])^(11/2)*Csc[a + b*x]^2,x]
 
output
(d^5*Sqrt[d*Cos[a + b*x]]*Csc[a + b*x]*(Sqrt[Cos[a + b*x]]*(-45 + 16*Cos[2 
*(a + b*x)] + Cos[4*(a + b*x)]) - 60*EllipticF[(a + b*x)/2, 2]*Sin[a + b*x 
]))/(28*b*Sqrt[Cos[a + b*x]])
 
3.3.32.3 Rubi [A] (verified)

Time = 0.58 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.10, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.476, Rules used = {3042, 3047, 3042, 3115, 3042, 3115, 3042, 3121, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \csc ^2(a+b x) (d \cos (a+b x))^{11/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(d \cos (a+b x))^{11/2}}{\sin (a+b x)^2}dx\)

\(\Big \downarrow \) 3047

\(\displaystyle -\frac {9}{2} d^2 \int (d \cos (a+b x))^{7/2}dx-\frac {d \csc (a+b x) (d \cos (a+b x))^{9/2}}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {9}{2} d^2 \int \left (d \sin \left (a+b x+\frac {\pi }{2}\right )\right )^{7/2}dx-\frac {d \csc (a+b x) (d \cos (a+b x))^{9/2}}{b}\)

\(\Big \downarrow \) 3115

\(\displaystyle -\frac {9}{2} d^2 \left (\frac {5}{7} d^2 \int (d \cos (a+b x))^{3/2}dx+\frac {2 d \sin (a+b x) (d \cos (a+b x))^{5/2}}{7 b}\right )-\frac {d \csc (a+b x) (d \cos (a+b x))^{9/2}}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {9}{2} d^2 \left (\frac {5}{7} d^2 \int \left (d \sin \left (a+b x+\frac {\pi }{2}\right )\right )^{3/2}dx+\frac {2 d \sin (a+b x) (d \cos (a+b x))^{5/2}}{7 b}\right )-\frac {d \csc (a+b x) (d \cos (a+b x))^{9/2}}{b}\)

\(\Big \downarrow \) 3115

\(\displaystyle -\frac {9}{2} d^2 \left (\frac {5}{7} d^2 \left (\frac {1}{3} d^2 \int \frac {1}{\sqrt {d \cos (a+b x)}}dx+\frac {2 d \sin (a+b x) \sqrt {d \cos (a+b x)}}{3 b}\right )+\frac {2 d \sin (a+b x) (d \cos (a+b x))^{5/2}}{7 b}\right )-\frac {d \csc (a+b x) (d \cos (a+b x))^{9/2}}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {9}{2} d^2 \left (\frac {5}{7} d^2 \left (\frac {1}{3} d^2 \int \frac {1}{\sqrt {d \sin \left (a+b x+\frac {\pi }{2}\right )}}dx+\frac {2 d \sin (a+b x) \sqrt {d \cos (a+b x)}}{3 b}\right )+\frac {2 d \sin (a+b x) (d \cos (a+b x))^{5/2}}{7 b}\right )-\frac {d \csc (a+b x) (d \cos (a+b x))^{9/2}}{b}\)

\(\Big \downarrow \) 3121

\(\displaystyle -\frac {9}{2} d^2 \left (\frac {5}{7} d^2 \left (\frac {d^2 \sqrt {\cos (a+b x)} \int \frac {1}{\sqrt {\cos (a+b x)}}dx}{3 \sqrt {d \cos (a+b x)}}+\frac {2 d \sin (a+b x) \sqrt {d \cos (a+b x)}}{3 b}\right )+\frac {2 d \sin (a+b x) (d \cos (a+b x))^{5/2}}{7 b}\right )-\frac {d \csc (a+b x) (d \cos (a+b x))^{9/2}}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {9}{2} d^2 \left (\frac {5}{7} d^2 \left (\frac {d^2 \sqrt {\cos (a+b x)} \int \frac {1}{\sqrt {\sin \left (a+b x+\frac {\pi }{2}\right )}}dx}{3 \sqrt {d \cos (a+b x)}}+\frac {2 d \sin (a+b x) \sqrt {d \cos (a+b x)}}{3 b}\right )+\frac {2 d \sin (a+b x) (d \cos (a+b x))^{5/2}}{7 b}\right )-\frac {d \csc (a+b x) (d \cos (a+b x))^{9/2}}{b}\)

\(\Big \downarrow \) 3120

\(\displaystyle -\frac {9}{2} d^2 \left (\frac {5}{7} d^2 \left (\frac {2 d^2 \sqrt {\cos (a+b x)} \operatorname {EllipticF}\left (\frac {1}{2} (a+b x),2\right )}{3 b \sqrt {d \cos (a+b x)}}+\frac {2 d \sin (a+b x) \sqrt {d \cos (a+b x)}}{3 b}\right )+\frac {2 d \sin (a+b x) (d \cos (a+b x))^{5/2}}{7 b}\right )-\frac {d \csc (a+b x) (d \cos (a+b x))^{9/2}}{b}\)

input
Int[(d*Cos[a + b*x])^(11/2)*Csc[a + b*x]^2,x]
 
output
-((d*(d*Cos[a + b*x])^(9/2)*Csc[a + b*x])/b) - (9*d^2*((2*d*(d*Cos[a + b*x 
])^(5/2)*Sin[a + b*x])/(7*b) + (5*d^2*((2*d^2*Sqrt[Cos[a + b*x]]*EllipticF 
[(a + b*x)/2, 2])/(3*b*Sqrt[d*Cos[a + b*x]]) + (2*d*Sqrt[d*Cos[a + b*x]]*S 
in[a + b*x])/(3*b)))/7))/2
 

3.3.32.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3047
Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n 
_), x_Symbol] :> Simp[a*(a*Cos[e + f*x])^(m - 1)*((b*Sin[e + f*x])^(n + 1)/ 
(b*f*(n + 1))), x] + Simp[a^2*((m - 1)/(b^2*(n + 1)))   Int[(a*Cos[e + f*x] 
)^(m - 2)*(b*Sin[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f}, x] && GtQ 
[m, 1] && LtQ[n, -1] && (IntegersQ[2*m, 2*n] || EqQ[m + n, 0])
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 
3.3.32.4 Maple [A] (verified)

Time = 3.50 (sec) , antiderivative size = 242, normalized size of antiderivative = 1.95

method result size
default \(-\frac {\sqrt {d \left (2 \left (\cos ^{2}\left (\frac {b x}{2}+\frac {a}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {b x}{2}+\frac {a}{2}\right )\right )}\, d^{7} \sin \left (\frac {b x}{2}+\frac {a}{2}\right ) \left (-128 \left (\sin ^{12}\left (\frac {b x}{2}+\frac {a}{2}\right )\right )+384 \left (\sin ^{10}\left (\frac {b x}{2}+\frac {a}{2}\right )\right )-576 \left (\sin ^{8}\left (\frac {b x}{2}+\frac {a}{2}\right )\right )+30 \cos \left (\frac {b x}{2}+\frac {a}{2}\right ) {\left (2 \left (\sin ^{2}\left (\frac {b x}{2}+\frac {a}{2}\right )\right )-1\right )}^{\frac {3}{2}} F\left (\cos \left (\frac {b x}{2}+\frac {a}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (b x +a \right )}{2}}+512 \left (\sin ^{6}\left (\frac {b x}{2}+\frac {a}{2}\right )\right )-204 \left (\sin ^{4}\left (\frac {b x}{2}+\frac {a}{2}\right )\right )+12 \left (\sin ^{2}\left (\frac {b x}{2}+\frac {a}{2}\right )\right )+7\right )}{14 {\left (-2 \left (\sin ^{4}\left (\frac {b x}{2}+\frac {a}{2}\right )\right ) d +d \left (\sin ^{2}\left (\frac {b x}{2}+\frac {a}{2}\right )\right )\right )}^{\frac {3}{2}} \cos \left (\frac {b x}{2}+\frac {a}{2}\right ) \sqrt {d \left (2 \left (\cos ^{2}\left (\frac {b x}{2}+\frac {a}{2}\right )\right )-1\right )}\, b}\) \(242\)

input
int((d*cos(b*x+a))^(11/2)*csc(b*x+a)^2,x,method=_RETURNVERBOSE)
 
output
-1/14*(d*(2*cos(1/2*b*x+1/2*a)^2-1)*sin(1/2*b*x+1/2*a)^2)^(1/2)*d^7/(-2*si 
n(1/2*b*x+1/2*a)^4*d+d*sin(1/2*b*x+1/2*a)^2)^(3/2)/cos(1/2*b*x+1/2*a)*sin( 
1/2*b*x+1/2*a)*(-128*sin(1/2*b*x+1/2*a)^12+384*sin(1/2*b*x+1/2*a)^10-576*s 
in(1/2*b*x+1/2*a)^8+30*cos(1/2*b*x+1/2*a)*(2*sin(1/2*b*x+1/2*a)^2-1)^(3/2) 
*EllipticF(cos(1/2*b*x+1/2*a),2^(1/2))*(sin(1/2*b*x+1/2*a)^2)^(1/2)+512*si 
n(1/2*b*x+1/2*a)^6-204*sin(1/2*b*x+1/2*a)^4+12*sin(1/2*b*x+1/2*a)^2+7)/(d* 
(2*cos(1/2*b*x+1/2*a)^2-1))^(1/2)/b
 
3.3.32.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 122, normalized size of antiderivative = 0.98 \[ \int (d \cos (a+b x))^{11/2} \csc ^2(a+b x) \, dx=\frac {15 i \, \sqrt {2} d^{\frac {11}{2}} \sin \left (b x + a\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (b x + a\right ) + i \, \sin \left (b x + a\right )\right ) - 15 i \, \sqrt {2} d^{\frac {11}{2}} \sin \left (b x + a\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (b x + a\right ) - i \, \sin \left (b x + a\right )\right ) + 2 \, {\left (2 \, d^{5} \cos \left (b x + a\right )^{4} + 6 \, d^{5} \cos \left (b x + a\right )^{2} - 15 \, d^{5}\right )} \sqrt {d \cos \left (b x + a\right )}}{14 \, b \sin \left (b x + a\right )} \]

input
integrate((d*cos(b*x+a))^(11/2)*csc(b*x+a)^2,x, algorithm="fricas")
 
output
1/14*(15*I*sqrt(2)*d^(11/2)*sin(b*x + a)*weierstrassPInverse(-4, 0, cos(b* 
x + a) + I*sin(b*x + a)) - 15*I*sqrt(2)*d^(11/2)*sin(b*x + a)*weierstrassP 
Inverse(-4, 0, cos(b*x + a) - I*sin(b*x + a)) + 2*(2*d^5*cos(b*x + a)^4 + 
6*d^5*cos(b*x + a)^2 - 15*d^5)*sqrt(d*cos(b*x + a)))/(b*sin(b*x + a))
 
3.3.32.6 Sympy [F(-1)]

Timed out. \[ \int (d \cos (a+b x))^{11/2} \csc ^2(a+b x) \, dx=\text {Timed out} \]

input
integrate((d*cos(b*x+a))**(11/2)*csc(b*x+a)**2,x)
 
output
Timed out
 
3.3.32.7 Maxima [F]

\[ \int (d \cos (a+b x))^{11/2} \csc ^2(a+b x) \, dx=\int { \left (d \cos \left (b x + a\right )\right )^{\frac {11}{2}} \csc \left (b x + a\right )^{2} \,d x } \]

input
integrate((d*cos(b*x+a))^(11/2)*csc(b*x+a)^2,x, algorithm="maxima")
 
output
integrate((d*cos(b*x + a))^(11/2)*csc(b*x + a)^2, x)
 
3.3.32.8 Giac [F]

\[ \int (d \cos (a+b x))^{11/2} \csc ^2(a+b x) \, dx=\int { \left (d \cos \left (b x + a\right )\right )^{\frac {11}{2}} \csc \left (b x + a\right )^{2} \,d x } \]

input
integrate((d*cos(b*x+a))^(11/2)*csc(b*x+a)^2,x, algorithm="giac")
 
output
integrate((d*cos(b*x + a))^(11/2)*csc(b*x + a)^2, x)
 
3.3.32.9 Mupad [F(-1)]

Timed out. \[ \int (d \cos (a+b x))^{11/2} \csc ^2(a+b x) \, dx=\int \frac {{\left (d\,\cos \left (a+b\,x\right )\right )}^{11/2}}{{\sin \left (a+b\,x\right )}^2} \,d x \]

input
int((d*cos(a + b*x))^(11/2)/sin(a + b*x)^2,x)
 
output
int((d*cos(a + b*x))^(11/2)/sin(a + b*x)^2, x)